AskDefine | Define concretion

Dictionary Definition

concretion

Noun

1 the formation of stonelike objects within a body organ (e.g., the kidneys)
2 a hard lump produced by the concretion of mineral salts; found in hollow organs or ducts of the body; "renal calculi can be very painful" [syn: calculus]
3 an increase in the density of something [syn: compaction, compression, densification]
4 the union of diverse things into one body or form or group; the growing together of parts [syn: coalescence, coalescency, coalition, conglutination]

User Contributed Dictionary

English

Pronunciation

Noun

  1. the process of coalescing into a mass
  2. any solid, hard mass
  3. a rounded mass of a mineral, sometimes found in sedimentary rock or on the ocean floor

Related terms

Extensive Definition

other uses enterolith

Origins

Detailed studies (i.e., Boles et al., 1985; Thyne and Boles, 1989; Scotchman, 1991; Mozley and Burns, 1993; McBride et al., 2003; Chan et al., 2005; Mozley and Davis, 2005) published in peer-reviewed journals, have demonstrated that they form subsequent to burial during diagenesis. They quite often form by the precipitation of a considerable amount of cementing material around a nucleus, often organic, such as a leaf, tooth, piece of shell or fossil. For this reason, fossil collectors commonly break open concretions in their search for fossil animal and plant specimens. One of the most unusual concretion nuclei, as documented by Al-Agha et al. (1995), are World War II military shells, bombs, and shrapnel, which are found inside siderite concretions found in an English coastal salt marsh.
Depending on the environmental conditions present at the time of their formation, concretions can be created by either concentric or pervasive growth (Mozley, 1996; Raiswell and Fisher, 2000). In concentric growth, the concretion grows as successive layers of mineral accrete to its surface. This process results in the radius of the concretion growing with time. In case of pervasive growth, cementation of the host sediments, by infilling of its pore space by precipitated minerals, occurs simultaneously throughout the volume of the area, which in time becomes a concretion.

Appearance

Concretions vary in shape, hardness and size, ranging from objects that require a magnifying lens to be clearly visible to huge bodies three meters in diameter and weighing several thousand pounds. The giant, red concretions occurring in Theodore Roosevelt National Park, in North Dakota, are almost 3 m (10 feet) in diameter. Spheroidal concretions, as large as 9 m (30 feet) in diameter, have been found eroding out of the Qasr El Sagha Formation within the Faiyum depression of Egypt. Concretions are usually similar in color to the rock in which they are found. Concretions occur in a wide variety of shapes, including spheres, disks, tubes, and grape-like or soap bubble-like aggregates.

Composition

They are commonly composed of a carbonate mineral such as calcite; an amorphous or microcrystalline form of silica such as chert, flint, or jasper; or an iron oxide or hydroxide such as goethite and hematite. They can also be composed of other minerals that include dolomite, ankerite, siderite, pyrite, marcasite, barite and gypsum.
Although concretions often consist of a single dominant mineral, other minerals can be present depending on the environmental conditions which created them. For example, carbonate concretions, which form in response to the reduction of sulfates by bacteria, often contain minor, percentages of pyrite. Other concretions, which formed as a result of microbial sulfate reduction, consist of a mixture of calcite, barite, and pyrite.

Occurrence

Concretions are found in a variety of rocks, but are particularly common in shales, siltstones, and sandstones. They often outwardly resemble fossils or rocks that look as if they do not belong to the stratum in which they were found. Occasionally, concretions contain a fossil, either as its nucleus or as a component that was incorporated during its growth but concretions are not fossils themselves. They appear in nodular patches, concentrated along bedding planes, protruding from weathered cliffsides, randomly distributed over mudhills or perched on soft pedestals.
Small hematite concretions ("blueberries") have been observed on Mars. See Martian spherules.

Types of concretions

Some of the names of concretions are septarian concretions, cannonball concretions, Moqui (Moki) marbles, and pop rocks.

Septarian concretions

Septarian concretions or septarian nodules, are concretions containing angular cavities or cracks, which are called "septaria". The word comes from the Latin word septum; "partition", and refers to the cracks/separations in this kind of rockhttp://dictionary.reference.com/search?q=septarian. There is an incorrect explanation that it comes from the Latin word for "seven", septemhttp://www.bestcrystals.com/septarian.htm, referring to the number of cracks that commonly occur.
The process which created the septaria, which characterize septarian concretions, remains a mystery. A number of mechanisms, i.e. the dehydration of clay-rich, gel-rich, or organic-rich cores; shrinkage of the concretion's center; expansion of gases produced by the decay of organic matter; brittle fracturing of the concentration by either earthquakes or compaction; and others, have been proposed for the formation of septaria. At this time, it is uncertain, which, if any, of these and other proposed mechanisms is responsible for the formation of septaria in septarian concretions (McBride et al. 2003). Septaria usually contain crystals precipitated from circulating solutions, usually of calcite. Siderite or pyrite coatings are also occasionally observed on the wall of the cavities present in the septaria, giving rise respectively to a panoply of bright reddish and golden colors. Some septaria may also contain small calcite stalagtites and well-shaped millimetric pyrite single crystals.
A spectacular example of septarian concretions, which are as much as 3 meters (9 feet) in diameter, is the Moeraki Boulders. These concretions are found eroding out of Paleocene mudstone of the Moeraki Formation exposed along the coast near Moeraki, South Island, New Zealand. They are composed of calcite-cemented mud with septarian veins of calcite and rare late-stage quartz and ferrous dolomite (Boles et al. 1985, Thyne and Boles 1989). Very similar concretions, which are as much as 3 meter (9 feet) in diameter and called "Koutu Boulders", litter the beach between Koutu and Kauwhare points along the south shore of the Hokianga Harbour of Hokianga, North Island, New Zealand. The much smaller septarian concretions found in the Kimmeridge Clay exposed in cliffs along the Wessex Coast of England are more typical examples of septarian concretions (Scotchman 1991).

Cannonball concretions

Cannonball concretions are large spherical concretions, which resemble cannonballs. These are found along the Cannonball River within Morton and Sioux Counties, North Dakota, and can reach 3 m (10 feet) in diameter. They were created by early cementation of sand and silt by calcite. Similar cannonball concretions, which are as much as 4 to 6 m (12 to 18 feet) in diameter, are found associated with sandstone outcrops of the Frontier Formation in northeast Utah and central Wyoming. They formed by the early cementation of sand by calcite (McBride et al. 2003). Somewhat weathered and eroded giant cannonball concretions, as large as 6 meters (18 feet) in diameter, occur in abundance at "Rock City" in Ottawa County, Kansas. The Moeraki and Koutu boulders of New Zealand are example of septarian concretions, which are also cannonball concretions. Large spherical rocks, which are found on the shore of Lake Huron near Kettle Point, Ontario, and locally known as "kettles", are typical cannonball concretions. Cannonball concretions have also been reported from Van Mijenfjorden, Spitsbergen; near Haines Junction, Yukon Territory, Canada; Jameson Land, East Greenland; near Mecevici, Ozimici, and Zavidovici in Bosnia-Herzegovina; and many other places. Reports of cannonball concretions have also come from Bandeng and Zhanlong hills near Gongxi Town, Hunan Province, China.http://en.epochtimes.com/news/7-4-17/54224.html

Elongate concretions

Elongate concretions form parallel to sedimentary strata and have been studied extensively due to the inferred influence of phreatic (saturated) zone groundwater flow direction on the orientation of the axis of elongation (e.g., Johnson, 1989; McBride et al., 1994; Mozley and Goodwin, 1995; Mozley and Davis, 2005). In addition to providing information about the orientation of past fluid flow in the host rock, elongate concretions can provide insight into local permeability trends (i.e., permeability correlation structure; Mozley and Davis, 1996), variation in groundwater velocity (Davis, 1999), and the types of geological features that influence flow.

External links

  • Hokianga Tourism Association, nd, Koutu boulders Really nice pictures of cannonball concretions.
concretion in German: Konkretion
concretion in Esperanto: Konkremento
concretion in French: Concrétion
concretion in Russian: Конкреция
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1